

1 ОСОБЕННОСТИ

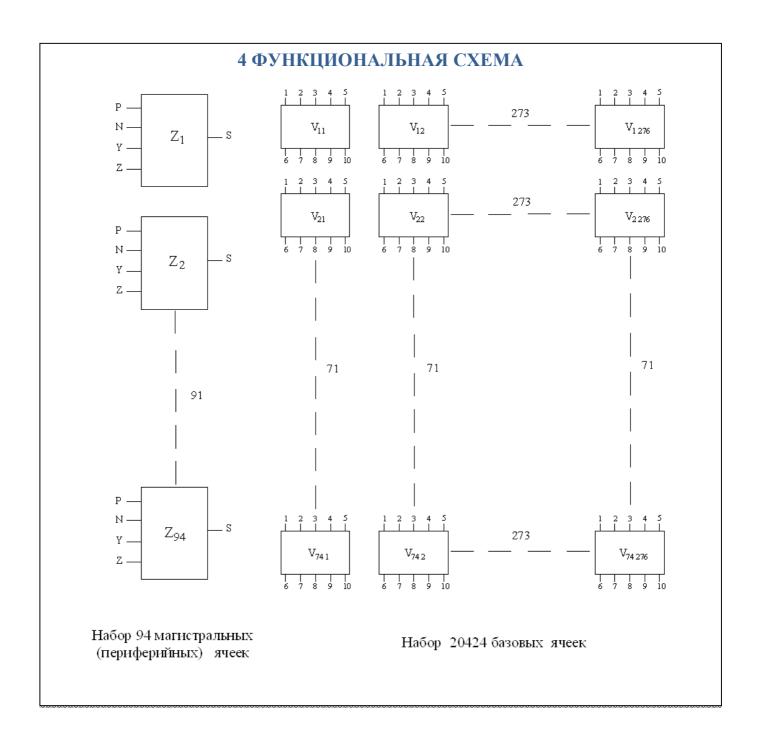
- Количество базовых ячеек 20424 шт.;
- Количество транзисторов 84828 шт.;
- Количество библиотечных элементов 35 шт.; из них: базовых 31 шт.,
 - магистральных 4 шт;
- Напряжение питания 4,5-7,5 В;
- Время задержки на вентиль не более 3,8 нс;
- Диапазон рабочей температуры: минус 60 85 °C;
- Стойкость к воздействию спецфакторов $7.И_1$, $7.И_6$, $7.И_7$, $7.C_1$, $7.C_3$, $7.C_4$, $7.C_6$, $7.K_1$, $7.K_4$, повышенная;
- Тип корпуса: 108-выводной металлокерамический корпус 4226.108—2; (5511БЦ6Т)
- Тип корпуса: 64-х выводной металлокерамический корпус H18.64-1B; (5511БЦ6У)

3 ПРИМЕНЕНИЕ

БМК предназначен для изготовления на его основе радиационно-стойких цифровых микросхем для комплектования радиоэлектронной аппаратуры специального назначения.

2 ОПИСАНИЕ

Базовый матричный кристалл (БМК) 5511БЦ6Т представляет собой заготовку кристалла, на поле которого размещены 20424 базовые ячейки для реализации логических и триггерных функций и 94 сигнальных магистральных ячейки, а также восемь «общих» и шесть «питающих».


Базовый матричный кристалл (БМК) 5511БЦ6У представляет собой заготовку кристалла, на поле которого размещены 20424 базовые ячейки для реализации логических и триггерных функций и 62 сигнальных магистральные ячейки, а также одна «общая» и одна «питающая».

Конкретное исполнение микросхемы на основе БМК создают с помощью двух переменных слоев алюминиевой металлизации, дополняющих БМК и соединяющих базовые компоненты в необходимую электрическую схему.

Базовый кристалл изготовлен по КМОП КНС технологии с проектными нормами 1,6 мкм.

Технические условия: AEЯР.431260.562 ТУ.

5511БЦ6Т / 5511БЦ6У Краткое описание

СОДЕРЖАНИЕ

1 ОСОБЕННОСТИ1	7 ОСНОВНЫЕ	ЭЛЕКТРИЧЕСКИЕ		
2 ОПИСАНИЕ1	ХАРАКТЕРИСТИКИ ОСНОВЕ БМК	МИКРОСХЕМ	HA 5	
3 ПРИМЕНЕНИЕ 1	8 ГАБАРИТНЫЙ ЧЕР	ГЕЖЖЭТ	6	
4 ФУНКЦИОНАЛЬНАЯ СХЕМА2				
5 ИСТОРИЯ ПОСЛЕДНИХ ИЗМЕНЕНИЙ 4				
6 НАЗНАЧЕНИЕ ВЫВОЛОВ5				

5 ИСТОРИЯ ПОСЛЕДНИХ ИЗМЕНЕНИЙ

Дата Изменение

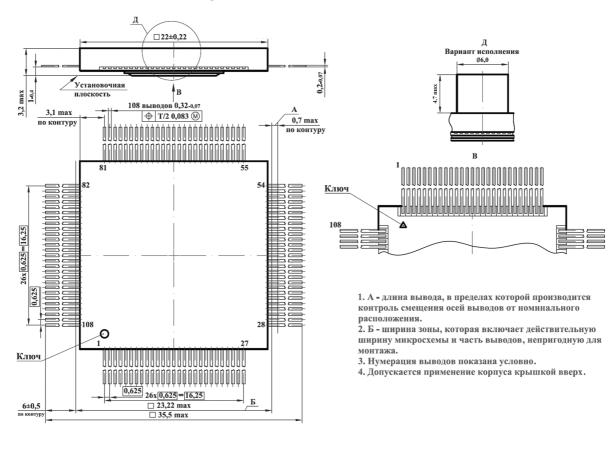
6 НАЗНАЧЕНИЕ ВЫВОДОВ 5511БЦ6Т

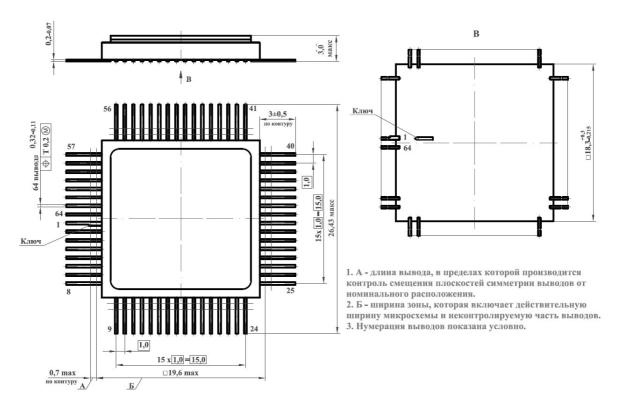
№ вывода корпуса	Обозначение вывода	Функциональное назначение вывода
11, 17, 36, 46, 65, 71, 90, 100	GND	Общий
33, 41, 49, 87, 95, 103	V_{CC}	Напряжение питания
1-10, 12-16, 18-32, 34, 35, 37-40, 42-45, 47, 48, 50-64, 66-70, 72-86, 88, 89, 91-94, 96-99, 101, 102, 104-108*	-	Свободный

^{*} Функциональное назначение выводов определяется в процессе разработке микросхемы. Незадействованные выводы необходимо подключать к шинам GND.

НАЗНАЧЕНИЕ ВЫВОДОВ 5511БЦ6У

№ вывода корпуса	Обозначение вывода	Функциональное назначение вывода
32	GND	Общий
64	V_{CC}	Напряжение питания
1-31, 33-63*	-	Свободный
		_


^{*} Функциональное назначение выводов определяется в процессе разработке микросхемы. Незадействованные выводы необходимо подключать к шинам GND.


7 ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ МИКРОСХЕМ НА ОСНОВЕ БМК

Наименование параметра, единица измерения	Буквенное обозначение параметра	Норма параметра		Т	
		не менее	не более	Температура среды, ⁰ С	Примечание
1. Выходное напряжение низкого уровня, B, при I_{0L} =1,2 мA	Uol	_	0,4	25, -60, 85	
2. Выходное напряжение высокого уровня, B, при I_{0H} =0,8 мA	U _{OH}	Ucc-0,4	ı	25, -60, 85	
3 . Ток потребления статический, мА, при $U_{CC} = 5,5B$	Inc	_	5,0	25	
	Icc		10,0	-60, 85	
4. Ток утечки низкого (высокого) уровня на входе, мкА, при U_{CC} =5,5B, U_{IL} =0B (U_{IH} =5,5B)	$I_{\rm ILL}(I_{\rm ILH})$	_	5,0	25	
			10,0	-60, 85	
5. Выходной ток низкого (высокого) уровня в состоянии «выключено», мк A , при $U_{\rm CC}$ =5,5 B , $U_{\rm IL}$ =0 B ($U_{\rm IH}$ =5,5 B)	Iozl (Iozh)	_	5,0	25	
			10,0	-60, 85	
6. Время задержки на вентиль, нс, при $U_{CC}\!\!=\!\!4,\!5B$	$\mathbf{t}_{ ext{d}}$	_	3,8	25	
			3,8	-60, 85	
7 Рабочая частота, МГц	f	-	40,0	25, -60, 85	1

8 ГАБАРИТНЫЙ ЧЕРТЕЖ

