

### 1 ОСОБЕННОСТИ

- Емкость БМК 950 тыс. эквивалентных вентилей;
  - Встроенные блоки генераторов с ФАПЧ;
  - Тактовая частота до 50 МГц;
  - Напряжение питания от 2,97 В до 3,63 В;
- Диапазон рабочей температуры: от минус  $60 \text{ до } 85 \,^{\circ}\text{C};$
- Стойкость к воздействию специальных факторов 7. $И_1$ , 7. $U_6$ , 7. $U_7$ , 7. $U_8$ , 7. $U_8$ , 7. $U_1$ , 7. $U_4$ , 7. $U_8$ ,
  - Тип корпуса 4245.240-6.01.

### 3 ПРИМЕНЕНИЕ

Микросхемы на основе БМК предназначены для применения в радиоаппаратуре, космической аппаратуре, разрабатываемых и модернизируемых образцах ВВТ, в аппаратуре бортовых спецвычислителей и спецавтоматики.

## 4 СРОКИ РЕАЛИЗАЦИИ ПРОЕКТА НА БМК

| Этап разработки     | Длительность этапа |
|---------------------|--------------------|
| Проектирование      | 2-4 месяца         |
| схемы электрической |                    |
| и топологии         |                    |
| Производство        | 4 месяца           |
| Измерения и         | 1 месяц            |
| испытания           |                    |

### 2 ОПИСАНИЕ

БМК 5511БЦ5Т предназначены для изготовления на их основе цифровых микросхем, стойких к воздействию специальных факторов.

Количество функциональных выводов: **140...160** 

#### Состав БМК:

- -950 тыс. эквивалентных вентилей типа «2И-HE»;
  - встроенные блоки:
    - 4 генератора с ФАПЧ (PLL);
  - источник отрицательного напряжения.

### Библиотека стандартных элементов:

в формате Liberty (Lib) для использования в стандартном маршруте проектирования ASIC (Synopsis, Cadence, Mentor Graphics)

#### Библиотека СФ-блоков:

- контроллеры интерфейсов:
  - UART;
  - RS-232;
  - I<sup>2</sup>C;
  - SPI:
  - SpaceWire;
  - ΜΚИΟ (ΓΟСТ P 52070);
  - ARINC-429 (ΓΟCT 18977);
  - PCI.



# СОДЕРЖАНИЕ

| 1 ОСОБЕННОСТИ                     | . 1 |
|-----------------------------------|-----|
| 2 ОПИСАНИЕ                        | . 1 |
| 3 ПРИМЕНЕНИЕ                      | . 1 |
| 4 СРОКИ РЕАЛИЗАЦИИ ПРОЕКТА НА БМК | . 1 |
| 5 ИСТОРИЯ ПОСЛЕДНИХ ИЗМЕНЕНИЙ     | . 3 |
| 6 ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ    | . 4 |
| 7 МАРШРУТ ПРОЕКТИРОВАНИЯ          | 5   |
| 8 ТЕСТОВАЯ ЗАШИВКА 5511БЦ5Т-999   | . 7 |
| 9 ГАБАРИТНЫЙ ЧЕРТЕЖ               | q   |



# 5 ИСТОРИЯ ПОСЛЕДНИХ ИЗМЕНЕНИЙ

Дата Изменение



### 6 ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

| Наименование параметра, единица измерения (режим измерения)                                                           | Буквенное обозначение параметра | параг | рма<br>метра<br>не | Температура среды, °С |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------|-------|--------------------|-----------------------|
| 1 Выходное напряжение низкого уровня, В $(I_{OL}=4 \text{ мA}, U_{CC}=2,97\text{B})$                                  | U <sub>OL</sub>                 | менее | более<br>0,4       | 25, 85,<br>минус 60   |
| 2 Выходное напряжение высокого уровня, В (I <sub>OH</sub> = -4 мA, U <sub>CC</sub> =2,97В)                            | U <sub>OH</sub>                 | 2,4   | -                  | 25, 85,<br>минус 60   |
| 3 Ток утечки низкого уровня на входе, мкА (U <sub>CC</sub> =3,63 B, U <sub>IH</sub> =0 B)                             | $I_{ILL}$                       | - 10  | -                  | 25, 85,<br>минус 60   |
| 4 Ток утечки низкого уровня на входе, мкА (U <sub>IL</sub> = минус 0,2 B, U <sub>CC</sub> =0 B)                       | $I_{ILL1}$                      | - 10  | -                  | 25, 85,<br>минус 60   |
| 5 Ток утечки высокого уровня на входе, мкА (U <sub>CC</sub> =3,63 B, U <sub>IH</sub> =3,63 B)                         | $I_{\rm ILH}$                   | -     | 10                 | 25, 85,<br>минус 60   |
| 6 Ток утечки высокого уровня на входе, мкА (U <sub>IH</sub> =3,6 B, U <sub>CC</sub> =0 B)                             | $I_{\rm ILH1}$                  | -     | 10                 | 25, 85,<br>минус 60   |
| 7 Выходной ток низкого уровня в состоянии «Выключено», мкА (U <sub>CC</sub> = 3,63 B, U <sub>OZL</sub> = 0 B)         | I <sub>OZL</sub>                | - 30  | -                  | 25, 85,<br>минус 60   |
| 8 Ток низкого уровня на выходе в состоянии «Выключено», мкА (Uozl = минус 0,2 В, Ucc=0 В)                             | $I_{OZL1}$                      | - 30  | -                  | 25, 85,<br>минус 60   |
| 9 Выходной ток высокого уровня в состоянии «Выключено», мкА ( $U_{CC}$ =3,63 B, $U_{OZH}$ =3,63 B)                    | I <sub>OZH</sub>                | -     | 30                 | 25, 85,<br>минус 60   |
| 10 Ток высокого уровня на выходе в состоянии «Выключено», мкА, (U <sub>OZH</sub> = минус 0,2 B, U <sub>CC</sub> =0 B) | I <sub>OZH1</sub>               | -     | 30                 | 25, 85,<br>минус 60   |
| 11 Статический ток потребления, мА (Ucc=3,63 B, U <sub>IH</sub> =2,4 B, U <sub>IL</sub> =0,6 B)                       | $I_{CC}$                        | -     | 20 1)              | 25, 85,<br>минус 60   |
| 12 Время задержки на вентиль «2И-НЕ», нс (U <sub>CC</sub> =2,97 В)                                                    | $t_p$                           | -     | 0,5                | 25, 85,<br>минус 60   |
| 1) 2 volvey volvey 5 volvey 5 volvey 2 volvey 2 volvey 2                                                              |                                 |       |                    |                       |

<sup>1)</sup> Значение может быть уточнено в карте заказа.



### 7 МАРШРУТ ПРОЕКТИРОВАНИЯ

Разработанная цифровая библиотека элементов поддерживает маршрут проектирования с использованием САПР Cadence и Synopsys, представленный на рисунке 7.1

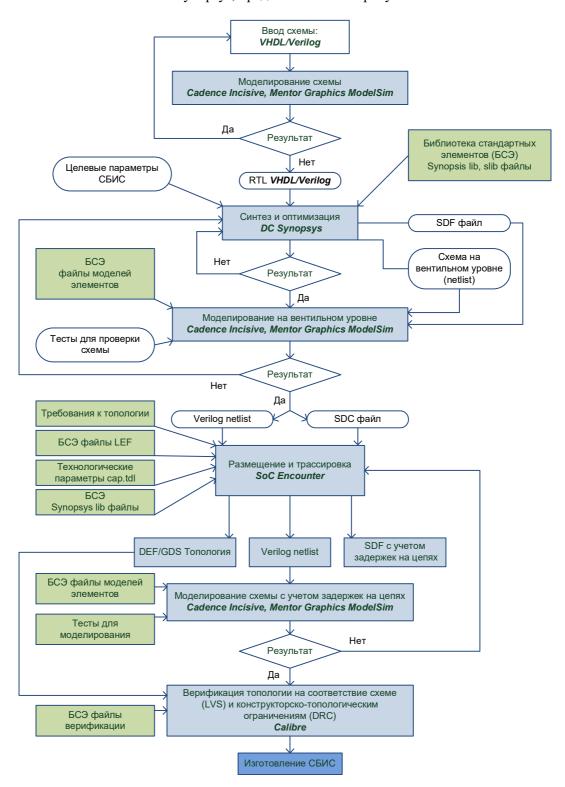



Рисунок 7.1 Маршрут проектирования





## 8 СХЕМА ВЗАИМОДЕЙСТВИЯ С ПРЕДПРИЯТИЯМИ

Разработка зашивок на БМК производится на разных уровнях взаимодействия с предприятиями, схема взаимодействия представлена на рисунке 8.1.

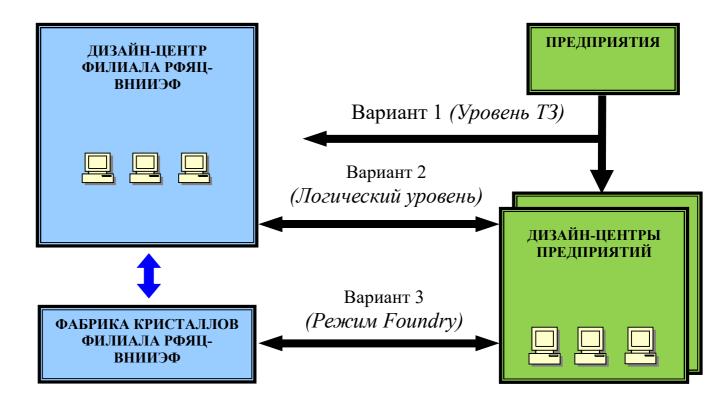



Рисунок 8.1. Схема взаимодействия с предприятиями при разработке и производстве ЭКБ



## 9 ТЕСТОВАЯ ЗАШИВКА 5511БЦ5Т-999

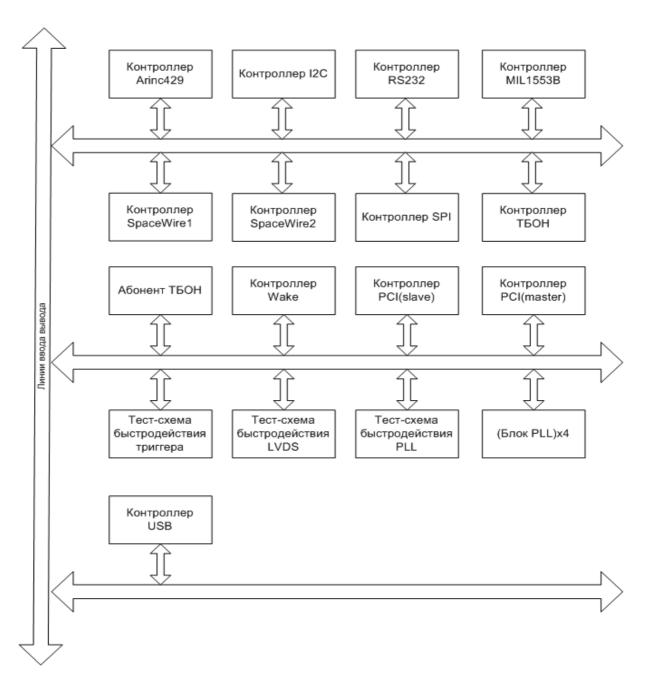
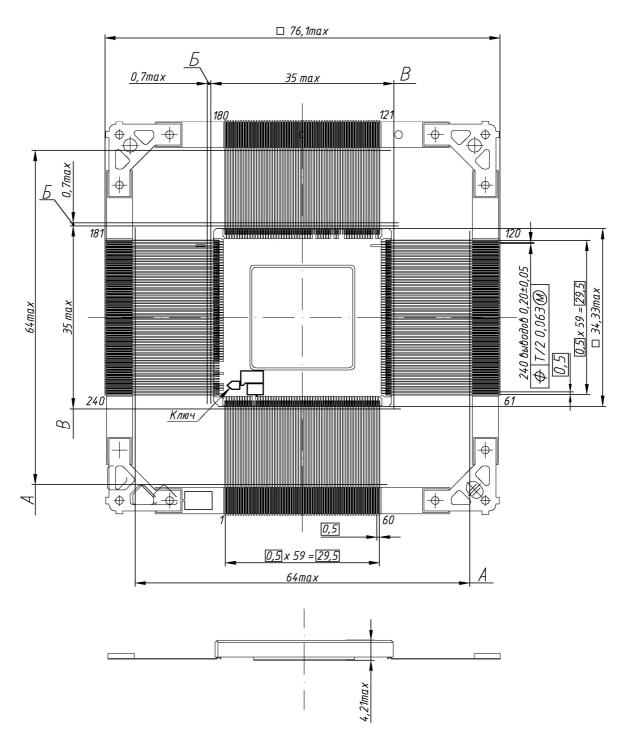




Рисунок 9.1 Структурная схема тестовой зашивки 5511БЦ5Т-999



## 10 ГАБАРИТНЫЙ ЧЕРТЕЖ



- 1. Нумерация выводов корпуса показана условно.
- 2. А зона обрубки технологической рамки. Обрубка осуществляется потребителем. Б длина вывода, в пределах которой производится контроль позиционного допуска осей выводов. В ширина зоны, которая включает действительную часть корпуса и часть выводов, непригодную для монтажа.
- 3. Неуказанные размеры корпуса микросхемы и дополнительные сведения о нем по ТАСФ.301176.004 ТУ.